9 research outputs found

    Estimating sample-specific regulatory networks

    Full text link
    Biological systems are driven by intricate interactions among the complex array of molecules that comprise the cell. Many methods have been developed to reconstruct network models of those interactions. These methods often draw on large numbers of samples with measured gene expression profiles to infer connections between genes (or gene products). The result is an aggregate network model representing a single estimate for the likelihood of each interaction, or "edge," in the network. While informative, aggregate models fail to capture the heterogeneity that is represented in any population. Here we propose a method to reverse engineer sample-specific networks from aggregate network models. We demonstrate the accuracy and applicability of our approach in several data sets, including simulated data, microarray expression data from synchronized yeast cells, and RNA-seq data collected from human lymphoblastoid cell lines. We show that these sample-specific networks can be used to study changes in network topology across time and to characterize shifts in gene regulation that may not be apparent in expression data. We believe the ability to generate sample-specific networks will greatly facilitate the application of network methods to the increasingly large, complex, and heterogeneous multi-omic data sets that are currently being generated, and ultimately support the emerging field of precision network medicine

    Nongenic cancer-risk SNPs affect oncogenes, tumour-suppressor genes, and immune function

    No full text
    Background Genome-wide association studies (GWASes) have identified many noncoding germline single-nucleotide polymorphisms (SNPs) that are associated with an increased risk of developing cancer. However, how these SNPs affect cancer risk is still largely unknown. Methods We used a systems biology approach to analyse the regulatory role of cancer-risk SNPs in thirteen tissues. By using data from the Genotype-Tissue Expression (GTEx) project, we performed an expression quantitative trait locus (eQTL) analysis. We represented both significant cis- and trans-eQTLs as edges in tissue-specific eQTL bipartite networks. Results Each tissue-specific eQTL network is organised into communities that group sets of SNPs and functionally related genes. When mapping cancer-risk SNPs to these networks, we find that in each tissue, these SNPs are significantly overrepresented in communities enriched for immune response processes, as well as tissue-specific functions. Moreover, cancer-risk SNPs are more likely to be ‘cores’ of their communities, influencing the expression of many genes within the same biological processes. Finally, cancer-risk SNPs preferentially target oncogenes and tumour-suppressor genes, suggesting that they may alter the expression of these key cancer genes. Conclusions This approach provides a new way of understanding genetic effects on cancer risk and provides a biological context for interpreting the results of GWAS cancer studies

    Clustering Sparse Data with Feature Correlation with Application to Discover Subtypes in Cancer

    No full text
    In this paper, given data with high-dimensional features, we study this problem of how to calculate the similarity between two samples by considering feature interaction network, where a feature interaction network represents the relationship between features. This is different from some traditional methods, those of which learn similarities based on a sample network that represents the relationship between samples. Therefore, we propose a novel network-based similarity metric for computing the similarity between samples, which incorporates the knowledge of feature interaction network, in order to overcome the data sparseness problem. Our similarity metric uses a new Feature Alignment Similarity measure, which does not directly compute the similarities among samples, but projects each sample into a feature interaction network and measures the similarities between two samples using the similarities between the vertices of the samples in the network. As such, when two samples do not share any common features, they are likely to have higher similarity values when their features share the similar network regions. For ensuring that the metric is useful in a real-world application, we apply our metric to discover subtypes in tumor mutational data by incorporating the information of the gene interaction network. Our experimental results from using synthetic data and real-world tumor mutational data show that our approach outperforms the top competitors in cancer subtype discovery. Furthermore, our approach can identify cancer subtypes that cannot be detected by other clustering algorithms in real cancer data

    PUMA: PANDA Using MicroRNA Associations

    No full text
    Abstract Motivation Conventional methods to analyze genomic data do not make use of the interplay between multiple factors, such as between microRNAs (miRNAs) and the messenger RNA (mRNA) transcripts they regulate, and thereby often fail to identify the cellular processes that are unique to specific tissues. We developed PUMA (PANDA Using MicroRNA Associations), a computational tool that uses message passing to integrate a prior network of miRNA target predictions with target gene co-expression information to model genome-wide gene regulation by miRNAs. We applied PUMA to 38 tissues from the Genotype-Tissue Expression project, integrating RNA-Seq data with two different miRNA target predictions priors, built on predictions from TargetScan and miRanda, respectively. We found that while target predictions obtained from these two different resources are considerably different, PUMA captures similar tissue-specific miRNA–target regulatory interactions in the different network models. Furthermore, the tissue-specific functions of miRNAs we identified based on regulatory profiles (available at: https://kuijjer.shinyapps.io/puma_gtex/) are highly similar between networks modeled on the two target prediction resources. This indicates that PUMA consistently captures important tissue-specific miRNA regulatory processes. In addition, using PUMA we identified miRNAs regulating important tissue-specific processes that, when mutated, may result in disease development in the same tissue. Availability and implementation PUMA is available in C++, MATLAB and Python on GitHub (https://github.com/kuijjerlab and https://netzoo.github.io/). Supplementary information Supplementary data are available at Bioinformatics online

    Discovery of novel candidates for anti- liposarcoma therapies by medium-scale high-throughput drug screening

    No full text
    Sarcomas are a heterogeneous group of mesenchymal orphan cancers and new treatment alternatives beyond traditional chemotherapeutic regimes are much needed. So far, tumor mutation analysis has not led to significant treatment advances, and we have attempted to bypass this limitation by performing direct drug testing of a library of 353 anti-cancer compounds that are either FDA-approved, in clinical trial, or in advanced stages of preclinical development on a panel of 13 liposarcoma cell lines. We identified and validated six drugs, targeting different mechanisms and with good efficiency across the cell lines: MLN2238 –a proteasome inhibitor, GSK2126458 –a PI3K/mTOR inhibitor, JNJ-26481585 –a histone deacetylase inhibitor, triptolide–a multi-target drug, YM155 –a survivin inhibitor, and APO866 (FK866)–a nicotinamide phosphoribosyl transferase inhibitor. GR50s for those drugs were mostly in the nanomolar range, and in many cases below 10 nM. These drugs had long-lasting effect upon drug withdrawal, limited toxicity to normal cells and good efficacy also against tumor explants. Finally, we identified potential genomic biomarkers of their efficacy. Being approved or in clinical trials, these drugs are promising candidates for liposarcoma treatment

    Discovery of novel candidates for anti- liposarcoma therapies by medium-scale high-throughput drug screening

    Get PDF
    Sarcomas are a heterogeneous group of mesenchymal orphan cancers and new treatment alternatives beyond traditional chemotherapeutic regimes are much needed. So far, tumor mutation analysis has not led to significant treatment advances, and we have attempted to bypass this limitation by performing direct drug testing of a library of 353 anti-cancer compounds that are either FDA-approved, in clinical trial, or in advanced stages of preclinical development on a panel of 13 liposarcoma cell lines. We identified and validated six drugs, targeting different mechanisms and with good efficiency across the cell lines: MLN2238 –a proteasome inhibitor, GSK2126458 –a PI3K/mTOR inhibitor, JNJ-26481585 –a histone deacetylase inhibitor, triptolide–a multi-target drug, YM155 –a survivin inhibitor, and APO866 (FK866)–a nicotinamide phosphoribosyl transferase inhibitor. GR50s for those drugs were mostly in the nanomolar range, and in many cases below 10 nM. These drugs had long-lasting effect upon drug withdrawal, limited toxicity to normal cells and good efficacy also against tumor explants. Finally, we identified potential genomic biomarkers of their efficacy. Being approved or in clinical trials, these drugs are promising candidates for liposarcoma treatment

    Identification of Key Tissue-Specific, Biological Processes by Integrating Enhancer Information in Maize Gene Regulatory Networks

    No full text
    Enhancers are key players in the spatio-temporal coordination of gene expression during numerous crucial processes, including tissue differentiation across development. Characterizing the transcription factors (TFs) and genes they connect, and the molecular functions underpinned is important to better characterize developmental processes. In plants, the recent molecular characterization of enhancers revealed their capacity to activate the expression of several target genes. Nevertheless, identifying these target genes at a genome-wide level is challenging, particularly for large-genome species, where enhancers and target genes can be hundreds of kilobases away. Therefore, the contribution of enhancers to plant regulatory networks remains poorly understood. Here, we investigate the enhancer-driven regulatory network of two maize tissues at different stages: leaves at seedling stage (V2-IST) and husks (bracts) at flowering. Using systems biology, we integrate genomic, epigenomic, and transcriptomic data to model the regulatory relationships between TFs and their potential target genes, and identify regulatory modules specific to husk and V2-IST. We show that leaves at the V2-IST stage are characterized by the response to hormones and macromolecules biogenesis and assembly, which are regulated by the BBR/BPC and AP2/ERF TF families, respectively. In contrast, husks are characterized by cell wall modification and response to abiotic stresses, which are, respectively, orchestrated by the C2C2/DOF and AP2/EREB families. Analysis of the corresponding enhancer sequences reveals that two different transposable element families (TIR transposon Mutator and MITE Pif/Harbinger) have shaped part of the regulatory network in each tissue, and that MITEs have provided potential new TF binding sites involved in husk tissue-specificity

    Sex Differences in Gene Expression and Regulatory Networks across 29 Human Tissues

    No full text
    Sex differences manifest in many diseases and may drive sex-specific therapeutic responses. To understand the molecular basis of sex differences, we evaluated sex-biased gene regulation by constructing sample-specific gene regulatory networks in 29 human healthy tissues using 8,279 whole-genome expression profiles from the Genotype-Tissue Expression (GTEx) project. We find sex-biased regulatory network structures in each tissue. Even though most transcription factors (TFs) are not differentially expressed between males and females, many have sex-biased regulatory targeting patterns. In each tissue, genes that are differentially targeted by TFs between the sexes are enriched for tissue-related functions and diseases. In brain tissue, for example, genes associated with Parkinson’s disease and Alzheimer’s disease are targeted by different sets of TFs in each sex. Our systems-based analysis identifies a repertoire of TFs that play important roles in sex-specific architecture of gene regulatory networks, and it underlines sex-specific regulatory processes in both health and disease

    Understanding Tissue-Specific Gene Regulation

    No full text
    Summary: Although all human tissues carry out common processes, tissues are distinguished by gene expression patterns, implying that distinct regulatory programs control tissue specificity. In this study, we investigate gene expression and regulation across 38 tissues profiled in the Genotype-Tissue Expression project. We find that network edges (transcription factor to target gene connections) have higher tissue specificity than network nodes (genes) and that regulating nodes (transcription factors) are less likely to be expressed in a tissue-specific manner as compared to their targets (genes). Gene set enrichment analysis of network targeting also indicates that the regulation of tissue-specific function is largely independent of transcription factor expression. In addition, tissue-specific genes are not highly targeted in their corresponding tissue network. However, they do assume bottleneck positions due to variability in transcription factor targeting and the influence of non-canonical regulatory interactions. These results suggest that tissue specificity is driven by context-dependent regulatory paths, providing transcriptional control of tissue-specific processes. : Understanding gene regulation is important for many fields in biology and medicine. Sonawane et al. reconstruct and investigate regulatory networks for 38 human tissues. They find that regulation of tissue-specific function is largely independent of transcription factor expression and that tissue specificity appears to be mediated by tissue-specific regulatory network paths. Keywords: GTEx, gene regulation, regulatory networks, gene expression, transcriptome, network biology, transcriptional regulation, tissue specificity, transcription factors, network medicin
    corecore